门户 学生 教工 校友 考生及访客 图书馆 English

当前位置: 首页 >> 学术动态 >> 正文

关于举办“通过机器学习预测用于自旋电子器件的新型铁磁材料”学术报告的通知——格物思贤系列讲座(第三十六期)

2024年07月15日     来源:物理与光电工程学院         次浏览

报告人:Atsufumi.Hirohata

报告题目:New Ferromagnetic Materials for SpintronicDevices Predicted by Machine Learning

报告时间:2024年7月17日上午9:30-10:30

报告地点:实验四号楼202

主办单位:星空体育·(China)官方网站物理与光电工程学院

报告人简介

Atsufumi.Hirohata(廣畑 貴文,ヒロハタ アツフミ),東北大学 先端スピントロニクス研究開発センター教授:

1 Center for Science and Innovation in Spintronics, Tohoku University, Sendai 980-8577,Japan.

2 Research Institute of Electrical Communication,Tohoku University, Sendai 980-8577,Japan

3 Max Planck Institute for Chemical Physics of Solids, Dresden 01187, Germany.

Atsufumi Hirohata joined the School of Physics, Engineering and Technology inSeptember 2007. He has over 15 years of experience in spintronics, ranging frommagnetic-domain imaging to spin-current interference. He is currently an editorialboard member of Journal of Physics D and Spin. He is also a member of bothAdministrative and Techical Committees of the IEEE Magnetics Society. He holds avisiting associate professorship at Tohoku University and a Royal Society IndustryFellowship in collaboration with Hitachi Cambridge Laboratory.


报告内容

In spintronics, magnetic tunnel and giant magnetoresistive junctions havebeen commonly used for magnetic recording, memories and sensors [1,2]. Thesejunctions typically consists of a CoFeB/MgO/CoFeB trilayer. They satisfy theendurance required for fabrication and operation. For further improvement intheir performance, namely their magnetoresistance ratios, Heusler alloys can bean ideal candidate due to their half-metallicity.

In this study, machine learning was used for the search of new Heusler alloys tosatisfy the above requirements with maintaining the 100% spin polarisation attheir Fermi level. As an example, a CoIrMnAl alloy was predicted to beferromagnetic in experimental and theoretical studies [3,4]. The films weresputtered using ultrahigh vacuum magnetron sputtering on MgO(001) and Sisubstrates. The structural and magnetic characterisation was done by X-raydiffraction and transmission electron microscopy, and vibrating samplemagnetometry, respectively.The optimised films were implemented in a magnetictunnel junction for transport measurements, showing over 100% tunnellingmagnetoresistance ratioThe material search is found to be useful by combiningwith ab initio calculations on alloys suggested by machine learning.

This work was partially supported by JST-CREST (No.JPMJCR17J5) andEPSRC(EP/V007211/1).

References

[1] A.Hirohata et al., J.Magn.Magn.Mater.509,166711(2020).

[2] A.Hirohata et al., Front. Phys. 10, 1007989 (2022).

[3] T.Roy et al.,J.Magn.Magn.Mater.498,166092(2020).

[4] R.Monma et al.,J.Alloys Comp.868,159175(2021).

审核:陈辉

编辑:郑琼彬

上一条:我校生物医药学院林章凛教授和华南理工大学生物科学与工程学院杨晓锋副教授团队在《Cell Reports》发布研究论文

下一条:关于举办碳中和系列讲座(七)的通知